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Subatomic Particles, 
Radiation Effects
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Overview

 Single-event effects: types

 Indirect ionization

 Cross-section

 Range

 Angular effects

 Poisson

2



Single-event effects

 Unlike accumulated dose effects, single-event effects could cause transient 
failures with only one particle

 Cross-section, which is an areal measurement to the sensitivity of a particular SEE, 
often determines how many particles to cause the SEE

 Since the sensitive area doesn't exist continuously across the part, there are areas 
where particles can hit and not cause the effect

 “time-space Poisson effects”
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SEE: the transient

 Measurable effects in an “off” transistor

 Particle strike liberates e-h pairs

 E-h pairs cause charge generation

 Charge generation causes the transistor to turn “on” temporarily

 Ion->charge->e-h pairs->current->signal
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SEE: the transient

 Even though the particle is much smaller than the transistor, the charge 
generation cloud can be much larger than one or many transistors

 Based on feature size

 The LET of the particle
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Types of SEEs

 Transient:

 Single-event transient

 Single-event upset

 Single-event functional interrupt

 Destructive:

 Single-event gate rupture

 Single-event dielectric rupture

 Single-event latchup

 Single-event burnout
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Single-event transients (Transients or 
SET)

 Radiation-induced charge temporarily 
changes the value of gate

 No way to tell the difference from a 
real signal and a transient-affected 
signal

 Transients in logic gates are a problem 
if latched, causes data corruption

 Transients in the clock or reset trees 
can cause much more global issues

 Decreasing clock frequencies make it 
easier to latch a transient: transient 
pulse and clock signal are roughly the 
same
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Critical Pulse Width for Unattenuated Propagation



Single-Event Upsets (upsets or SEUs)

 Cause bit flips in memory-based

 Data changes from 1→0 or 0→1

 In some parts single-bit upsets (SBUs) are as common as multiple-cell upsets (MCUs)

 Handy guide for MCUs:

 All multiple SEUs are MCUs

 Multiple-bit upsets are MCUs within a single word (memory) or frame (FPGA)

 Strongly affected by feature size:

 Smaller feature size means smaller targets, smaller Qcrit, more MCUs

 Even with a decrease in per-bit cross-section, often see an increase in per-device 
cross-section increase
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Single-Event Functional Interrupts 
(SEFIs)

 Device will not operate functionally until reset

 Often caused by an SET or SEU in control logic for the device

 Causes availability issues as part will need to be reset to return to 
functionality
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Single-event latch-up (SEL)

 Traditional reliability issue with 
CMOS due to parasitic transistors 
caused by well/substrate contact

 Once turned on, current increases 
rapidly and destroys the part

 Radiation is another avenue for 
turning on the parasitic transistor

 Military/aerospace parts often 
have an epitaxial layer to prevent 
SEL, by localizing charge collection
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Single-Event Gate Rupture (SEGR)

 Common only in power MOSFETs

 Occasionally seen in parts that 
have on-chip power, such as flash

 Ion-induced rupture of the gate 
oxide

 Destructive event – dielectric and 
gate electrode material “melt and 
mix”

 Ohmic short or a rectifying contact 
through the dielectric
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Indirect Ionization

 SEEs can be caused by both direct ionization and indirect ionization

 Indirect ionization occurs when a particle hits the lattice and creates a 
nuclear fragment or a nucleus to be liberated from the lattice – nuclear recoil

 In this case the the ionization is caused by the nuclear fragment and not the 
incident particle

 Because the particle has to hit an atom head on to cause the nuclear recoil, 
devices are less sensitive to particles that cause indirect ionization
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Indirect vs. Direct Ionization

 Because indirect ionization includes a direct strike to a Si atom, it is a much 
lower probability event than direct ionization

 The cross-sections for indirect ionization on the same part will be 5-7 orders 
of magnitude

 Particles or energy ranges of particles that cause direct ionization effects are 
a concern
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Direct vs. Indirect Ionization:
Particles

Particle Direct Indirect
Heavy ion X

Proton < 3 MeV* > 3 MeV
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Low vs. High energy effects

Particle Low High

Heavy ion direct direct

Proton direct* indirect

Neutron indirect indirect
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Low-energy proton effects

 Direct ionization from low-energy protons can be problematic, because low-
energy protons are very abundant in both space and terrestrial environments

 Direct ionization effects from low-energy protons would greatly increase error 
rates
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Protons vs neutrons

 Protons and neutrons have a lot of the same effect as each other, in terms of 
SEE

 In general, as a rule of thumb, the effect of a proton or a neutron above 10 
MeV is equivalent

 Neutrons will never have a direct ionization effect because neutrons lack 
charge
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Low-energy neutrons

 There are thermal neutron effects in some parts, though

 In those cases, the problem is not the neutron (per se) but the manufacturing 
of the part

 Boron is very commonly in parts to reduce neutron effects

 B10 has a sensitivity to thermal (low-energy) neutrons – B10 + n → Li7 + alpha –
both the Li7 and the alpha can cause a SEE because the reaction is occurring in the 
sensitive volume
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B10-contamination

 A “known” problem...that isn't disappearing

 Some parts in recent years have shown a wide range of B10 contamination 
from really bad to none

 B10 is a price point in manufacturing but can be hard to get rid of
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Cross-section

 Like TID, devices are tested to measure the cross-section

 On-set: lowest LET/energy to cause the reaction

 Saturation cross-section: the maximum sensitivity to the effect

 Most devices have one or some SEEs

 Measurements of previous parts are not a good predictor of current parts –
manufacturing, feature shrink, transistor design affects the sensitivity

 There might be different on-sets and saturation cross-sections for different effects 
on the same device
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Cross-section example (RTAX SET)
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Cross-section and error rates

 The cross-section is combined with the environment in tools like CREME-MC to 
determine an error rate for the device in the environment

 The error rate will help you determine whether mitigation is needed or not

 How does on-set affect error rates?

 How does the saturation cross-section effect error rates?
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Cross-section vs. Range

 Range is an important part of testing for cross-section

 Remember that the sensitive volume is buried in the device

 In space it doesn't matter that the sensitive volume is buried, because the particles 
have more kinetic energy than we can create in an accelerator

 In testing to get an accurate measurement of cross-section, you must ensure that 
the radiation makes it to the sensitive volume otherwise the test is not accurate
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● In the top drawing, the radiation 
stops before it gets to the 
sensitive volume

● In the bottom drawing, the 
radiation gets to the sensitive 
volume, causing the charge 
generation to penetrate the 
sensitive volume

● It doesn't matter where it hits the 
sensitive volume – it just needs 
to get there

Sensitive Volume vs. Range
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Angular Effects

● In testing, some people will rotate 
the device in the beam to strike it at 
an angle

● What three things happen or could 
happen when you rotate the device?
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Cross-section vs. Angle

 As long as you do not exceed the range of the ion, you get an increase of 
angle

 At the same time, the target shape changes

 It is now harder to hit the target

 The angle is taken into account in both the LET tested at and the cross-
section – you don't want to mix the data
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Angle Data on FPGAs

 Turns out that angle matters when testing FPGAs

 Many devices, especially SRAM, are very regular in their layout

 Not true for FPGAs – angular test results tends to highlight the heterogeneous 
layout

 It's like mixing apples and oranges
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Poisson Statistics

 “The probability of a number of events occurring in a fixed period of time if 
these events occur with a known average rate and independently of the time 
since the last event”

 One of the thing is predicts is the probability of a certain amount of radiation 
within a given time

 Since Poisson statistics affects how much radiation emits at any given time, it 
affects the error rates

 For TID the Poisson statistics mostly normalizes

 For SEE the Poisson statistics causes constant variation in the error rates
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Poisson Probability Law

 The Poisson probability law tells us the probability that given

 The average number of events per unit time, λ

 The time τ, and

 The number of events, k

 The probability of k events during time τ is
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Inter-arrival time of SEEs

 Average rate only provides the “mean-
average arrival rate” that upsets will 
occur at

 Errors will arrive based on the Poisson 
random process

 MTTU gives the likely interval that 
errors will arrive at

 Poisson determines when the errors 
will manifest

 There is an equal chance that no 
events and one event occur in one 
time period

 There is a 26% chance that 2 or more 
events occur
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Inter-arrival time of SEEs

 Just because the sortie length < 
MTTU does not mean there will not 
be in-flight upsets

 At 20,000 feet, there is a 5% 
chance of having an upset in the 
first flight

 Each subsequent flight, it becomes 
increasingly less likely to not have 
an upset
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Poisson Examples

 CREME-MC and QARM will provide you an estimate of what the error rate.

 You can convert that error rate into mean time to upset (MTTU) by inverting 
it:

 MTTU = 1/SER

 Once you get to MTTU, then you can start asking questions like

 Given time T, what is the probability that the system is still working?

 Given time T, what is the probability that X upsets have happened?
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What is the probability the system is still 
working?

 Assume that the system will fail if there are any errors.  The error rate is 1 
error per hour and we are interested in the first hour of operation.  What is 
the chance that the system is still working in one hour?

 First off, our variables lambda and tau are:
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 Same setup, except tau is different

 First off, our variables lambda and tau are:

What is the probability the system is still 
working after two hours?
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What is the probability there are two 
errors in 1 hour?
 Same setup, except k is different

 First off, our variables lambda and tau are:
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